Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract The escalating drug addiction crisis in the United States underscores the urgent need for innovative therapeutic strategies. This study embarked on an innovative and rigorous strategy to unearth potential drug repurposing candidates for opioid and cocaine addiction treatment, bridging the gap between transcriptomic data analysis and drug discovery. We initiated our approach by conducting differential gene expression analysis on addiction-related transcriptomic data to identify key genes. We propose a novel topological differentiation to identify key genes from a protein–protein interaction network derived from DEGs. This method utilizes persistent Laplacians to accurately single out pivotal nodes within the network, conducting this analysis in a multiscale manner to ensure high reliability. Through rigorous literature validation, pathway analysis and data-availability scrutiny, we identified three pivotal molecular targets, mTOR, mGluR5 and NMDAR, for drug repurposing from DrugBank. We crafted machine learning models employing two natural language processing (NLP)-based embeddings and a traditional 2D fingerprint, which demonstrated robust predictive ability in gauging binding affinities of DrugBank compounds to selected targets. Furthermore, we elucidated the interactions of promising drugs with the targets and evaluated their drug-likeness. This study delineates a multi-faceted and comprehensive analytical framework, amalgamating bioinformatics, topological data analysis and machine learning, for drug repurposing in addiction treatment, setting the stage for subsequent experimental validation. The versatility of the methods we developed allows for applications across a range of diseases and transcriptomic datasets.more » « less
- 
            Homomeric dimerization of metabotropic glutamate receptors (mGlus) is essential for the modulation of their functions and represents a promising avenue for the development of novel therapeutic approaches to address central nervous system diseases. Yet, the scarcity of detailed molecular and energetic data on mGlu2 impedes our in-depth comprehension of their activation process. Here, we employ computational simulation methods to elucidate the activation process and key events associated with the mGlu2, including a detailed analysis of its conformational transitions, the binding of agonists, Giprotein coupling, and the guanosine diphosphate (GDP) release. Our results demonstrate that the activation of mGlu2 is a stepwise process and several energy barriers need to be overcome. Moreover, we also identify the rate-determining step of the mGlu2’s transition from the agonist-bound state to its active state. From the perspective of free-energy analysis, we find that the conformational dynamics of mGlu2’s subunit follow coupled rather than discrete, independent actions. Asymmetric dimerization is critical for receptor activation. Our calculation results are consistent with the observation of cross-linking and fluorescent-labeled blot experiments, thus illustrating the reliability of our calculations. Besides, we also identify potential key residues in the Giprotein binding position on mGlu2, mGlu2 dimer’s TM6–TM6 interface, and Gi α5 helix by the change of energy barriers after mutation. The implications of our findings could lead to a more comprehensive grasp of class C G protein-coupled receptor activation.more » « less
- 
            Abstract The logarithm ofn‐octanol–water partition coefficient (logP) is frequently used as an indicator of lipophilicity in drug discovery, which has substantial impacts on the absorption, distribution, metabolism, excretion, and toxicity of a drug candidate. Considering that the experimental measurement of the property is costly and time‐consuming, it is of great importance to develop reliable prediction models for logP. In this study, we developed a transfer free energy‐based logP prediction model‐FElogP. FElogP is based on the simple principle that logP is determined by the free energy change of transferring a molecule from water ton‐octanol. The underlying physical method to calculate transfer free energy is the molecular mechanics‐Poisson Boltzmann surface area (MM‐PBSA), thus this method is named as free energy‐based logP (FElogP). The superiority of FElogP model was validated by a large set of 707 structurally diverse molecules in the ZINC database for which the measurement was of high quality. Encouragingly, FElogP outperformed several commonly‐used QSPR or machine learning‐based logP models, as well as some continuum solvation model‐based methods. The root‐mean‐square error (RMSE) and Pearson correlation coefficient (R) between the predicted and measured values are 0.91 log units and 0.71, respectively, while the runner‐up, the logP model implemented in OpenBabel had an RMSE of 1.13 log units and R of 0.67. Given the fact that FElogP was not parameterized against experimental logP directly, its excellent performance is likely to be expanded to arbitrary organic molecules covered by the general AMBER force fields.more » « less
- 
            Abstract Accurate estimation of solvation free energy (SFE) lays the foundation for accurate prediction of binding free energy. The Poisson‐Boltzmann (PB) or generalized Born (GB) combined with surface area (SA) continuum solvation method (PBSA and GBSA) have been widely used in SFE calculations because they can achieve good balance between accuracy and efficiency. However, the accuracy of these methods can be affected by several factors such as the charge models, polar and nonpolar SFE calculation methods and the atom radii used in the calculation. In this work, the performance of the ABCG2 (AM1‐BCC‐GAFF2) charge model as well as other two charge models, that is, RESP (Restrained Electrostatic Potential) and AM1‐BCC (Austin Model 1‐bond charge corrections), on the SFE prediction of 544 small molecules in water by PBSA/GBSA was evaluated. In order to improve the performance of the PBSA prediction based on the ABCG2 charge, we further explored the influence of atom radii on the prediction accuracy and yielded a set of atom radius parameters for more accurate SFE prediction using PBSA based on the ABCG2/GAFF2 by reproducing the thermodynamic integration (TI) calculation results. The PB radius parameters of carbon, oxygen, sulfur, phosphorus, chloride, bromide and iodine, were adjusted. New atom types,on,oi,hn1,hn2,hn3, were introduced to further improve the fitting performance. Then, we tuned the parameters in the nonpolar SFE model using the experimental SFE data and the PB calculation results. By adopting the new radius parameters and new nonpolar SFE model, the root mean square error (RMSE) of the SFE calculation for the 544 molecules decreased from 2.38 to 1.05 kcal/mol. Finally, the new radius parameters were applied in the prediction of protein‐ligand binding free energies using the MM‐PBSA method. For the eight systems tested, we could observe higher correlation between the experiment data and calculation results and smaller prediction errors for the absolute binding free energies, demonstrating that our new radius parameters can improve the free energy calculation using the MM‐PBSA method.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
